BOOLEAN ALGEBRA
Introduction
- Boolean Algebra (developed by George Boole) is an algebra for the manipulation of objects that can take on only two logical value,typically true and false.
- Boolean Variables that only have the two value ‘0’ (false) and ‘1’ (true).
- Boolean Functions
Logic
Functions
|
Symbols
|
OR
|
+
|
AND
|
&
|
NOT
|
-or ’
|
-each of the logic
function are represented by symbols as described above.
·
Boolean Theorems is a
set of identities and laws.
Boolean
Identities
OR Function
|
AND Function
|
NOT Function
|
0+0=0
|
0&0=0
|
0’=1
|
0+1=1
|
0&1=0
|
1’=0
|
1+0=1
|
1&0=0
|
A’=A
|
1+1=1
|
1&1=1
|
|
A+0=A
|
A&0=0
|
|
0+A=A
|
0&A=0
|
|
A+1=1
|
A&1=A
|
|
1+A=1
|
1&A=A
|
|
A+A=A
|
A&A=A
|
***notes
·
OR (+)
·
AND
(&)
·
NOT( -
or ’)
Boolean Laws
Identity Law
|
i.
A+0=0
ii.
A& 1 = A
|
Zero and One Laws
|
i.
A+1=1
ii.
A&0=0
|
Idempotent Laws
|
i.
A + A = A
ii.
A&A= A
|
Inverse Laws
|
i.
A+A’=1
ii.
A&A’ = 1
|
Commutative Laws
|
i.
A + B = B + A
ii.
A&B = B&A
|
Associative Laws
|
i.
A + (B+C)
= (A+B) + C
ii.
A& (B&C) = (A&B) &C
|
Distributive Laws
|
i.
A + (B&C) = (A+B) & (A+C)
ii.
A& (B&C) = (A&B) + (A&C)
|
Absorption Laws
|
i.
A + A&B = A /
A + A’B = A+B
ii.
A (A + B) =A
|
symbol i. is OR form
symbol ii. is AND form
Examples
of Boolean Algebras
Example
1:
A’B + A’B’ + AC + AC’ = A’(B+B’)
+ A(C+C’)
= A’ (1)
+ A (1)
= A
+A’
= 1
Example
2:
xyz
+ xz’ +
xy’z = xyz + xy’z + xz’
=xz(y + y’) + xz’
= xz + xz’
= x (z +z’)
= x
Example
4:
X(W’Z +
WZ)+ XY = XZ(W’+ W)+XY
=XZ + XY
=X(Z+Y)
- http://home.adelphi.edu/~siegfried/cs371/371l3.pdf
- http://courses.cs.vt.edu/cs2505/fall2012/Notes/T32_BooleanAlgebra.pdf
- http://books.google.com.my/books?id=f83XxoBC_8MC&pg=PA122&lpg=PA122&dq=boolean+algebra+computer+organization+architecture&source=bl&ots=5ekB1eR8V9&sig=rAwtSI4K3n6Il26PjUQiIxfX6t8&hl=en&sa=X&ei=QFBtUNuzLorirAfZk4GwBQ&ved=0CCMQ6AEwAQ#v=onepage&q=boolean%20algebra%20computer%20organization%20architecture&f=false
- http://www.ee.surrey.ac.uk/Projects/Labview/boolalgebra/index.html
- http://www.google.com.my/imgres?q=Boolean+Algebra&hl=en&sa=X&biw=1069&bih=599&tbm=isch&prmd=imvnsb&tbnid=coGALtyulgW5BM:&imgrefurl=http://www.tpub.com/neets/book13/54h.htm&docid=t8ID4Z21BOIsdM&imgurl=http://www.tpub.com/neets/book13/NF130220.GIF&w=900&h=751&ei=hVFtUOHCDYbMrQf8lICYBA&zoom=1&iact=rc&dur=0&sig=116109911643460835037&page=1&tbnh=123&tbnw=147&start=0&ndsp=17&ved=1t:429,r:2,s:0,i:76&tx=599&ty=23
Written by,
Yau Kai Shi
B031210077
No comments:
Post a Comment