BOOLEAN ALGEBRA
                                                 Introduction
- Boolean Algebra (developed by George Boole) is an algebra for the manipulation of objects that can take on only two logical value,typically true and false.
- Boolean Variables that only have the two value ‘0’ (false) and ‘1’ (true).
- Boolean Functions
| 
Logic
  Functions | 
Symbols | 
| 
OR | 
+ | 
| 
AND | 
& | 
| 
NOT | 
-or ’ | 
-each of the logic
function are represented by symbols as described above.
·        
Boolean Theorems is a
set of identities and laws.
Boolean
Identities
| 
OR Function | 
AND Function | 
NOT Function | 
| 
0+0=0 | 
0&0=0 | 
0’=1 | 
| 
0+1=1 | 
0&1=0 | 
1’=0 | 
| 
1+0=1 | 
1&0=0 | 
A’=A | 
| 
1+1=1 | 
1&1=1 | |
| 
A+0=A | 
A&0=0 | |
| 
0+A=A | 
0&A=0 | |
| 
A+1=1 | 
A&1=A | |
| 
1+A=1 | 
1&A=A | |
| 
A+A=A | 
A&A=A | 
***notes
·        
OR (+)
·        
AND
(&)
·        
NOT( -
or ’)
Boolean Laws
| 
Identity Law | 
      
  i.           
  A+0=0 
     ii.           
  A& 1 = A | 
| 
Zero and One Laws | 
       i.           
  A+1=1 
     ii.           
  A&0=0 | 
| 
Idempotent Laws | 
       i.           
  A + A = A 
     ii.           
  A&A= A | 
| 
Inverse Laws | 
       i.           
  A+A’=1 
     ii.           
  A&A’ = 1 | 
| 
Commutative Laws | 
       i.           
  A + B = B + A 
     ii.           
  A&B = B&A | 
| 
Associative Laws | 
       i.           
  A + (B+C)
  = (A+B) + C 
     ii.           
  A& (B&C) = (A&B) &C | 
| 
Distributive Laws | 
       i.           
  A + (B&C) = (A+B) & (A+C) 
     ii.           
  A& (B&C) = (A&B) + (A&C) | 
| 
Absorption Laws | 
       i.           
  A + A&B  = A    / 
A + A’B = A+B 
     ii.           
  A (A + B) =A | 
symbol i. is OR form
symbol ii. is AND form
Examples
of Boolean Algebras
Example
1:
A’B + A’B’ + AC + AC’ = A’(B+B’)
+ A(C+C’)
                     
= A’ (1)
+ A (1)
          = A
+A’
   = 1
Example
2:
xyz
+ xz’ +
xy’z = xyz + xy’z + xz’
                         =xz(y + y’) + xz’
                         = xz + xz’
                         = x (z +z’)
                         = x
Example
4:
X(W’Z +
WZ)+ XY = XZ(W’+ W)+XY
                               =XZ + XY
                               =X(Z+Y)
- http://home.adelphi.edu/~siegfried/cs371/371l3.pdf
- http://courses.cs.vt.edu/cs2505/fall2012/Notes/T32_BooleanAlgebra.pdf
- http://books.google.com.my/books?id=f83XxoBC_8MC&pg=PA122&lpg=PA122&dq=boolean+algebra+computer+organization+architecture&source=bl&ots=5ekB1eR8V9&sig=rAwtSI4K3n6Il26PjUQiIxfX6t8&hl=en&sa=X&ei=QFBtUNuzLorirAfZk4GwBQ&ved=0CCMQ6AEwAQ#v=onepage&q=boolean%20algebra%20computer%20organization%20architecture&f=false
- http://www.ee.surrey.ac.uk/Projects/Labview/boolalgebra/index.html
- http://www.google.com.my/imgres?q=Boolean+Algebra&hl=en&sa=X&biw=1069&bih=599&tbm=isch&prmd=imvnsb&tbnid=coGALtyulgW5BM:&imgrefurl=http://www.tpub.com/neets/book13/54h.htm&docid=t8ID4Z21BOIsdM&imgurl=http://www.tpub.com/neets/book13/NF130220.GIF&w=900&h=751&ei=hVFtUOHCDYbMrQf8lICYBA&zoom=1&iact=rc&dur=0&sig=116109911643460835037&page=1&tbnh=123&tbnw=147&start=0&ndsp=17&ved=1t:429,r:2,s:0,i:76&tx=599&ty=23
Written by,
Yau Kai Shi
B031210077


 
No comments:
Post a Comment