Saturday, 13 October 2012

Digital Logic - Boolean Algebra, by Yau Kai Shi


BOOLEAN ALGEBRA
                                                 Introduction
  •  Boolean Algebra (developed by George Boole) is an algebra for the manipulation of objects that can take on only two logical value,typically true and false.
  •  Boolean Variables that only have the two value ‘0’ (false) and ‘1’ (true).
  •  Boolean Functions


Logic Functions
Symbols
OR
+
AND
&
NOT
-or ’

-each of the logic function are represented by symbols as described above.

·         Boolean Theorems is a set of identities and laws.

Boolean Identities
OR Function
AND Function
NOT Function
0+0=0
0&0=0
0’=1
0+1=1
0&1=0
1’=0
1+0=1
1&0=0
A’=A
1+1=1
1&1=1

A+0=A
A&0=0

0+A=A
0&A=0

A+1=1
A&1=A

1+A=1
1&A=A

A+A=A
A&A=A


***notes
·         OR (+)
·         AND (&)
·         NOT( - or ’)

Boolean Laws
Identity Law
       i.            A+0=0
     ii.            A& 1 = A
Zero and One Laws
       i.            A+1=1
     ii.            A&0=0
Idempotent Laws
       i.            A + A = A
     ii.            A&A= A
Inverse Laws
       i.            A+A’=1
     ii.            A&A’ = 1
Commutative Laws
       i.            A + B = B + A
     ii.            A&B = B&A
Associative Laws
       i.            A + (B+C) = (A+B) + C
     ii.            A& (B&C) = (A&B) &C
Distributive Laws
       i.            A + (B&C) = (A+B) & (A+C)
     ii.            A& (B&C) = (A&B) + (A&C)

Absorption Laws
       i.            A + A&B  = A    /
A + AB = A+B
     ii.            A (A + B) =A






            







symbol i. is OR form
symbol ii. is AND form




Examples of Boolean Algebras
Example 1:
AB + AB+ AC + AC= A’(B+B’) + A(C+C’)
                      = A’ (1) + A (1)
          = A +A
   = 1

Example 2:
xyz + xz+ xyz = xyz + xyz + xz
                         =xz(y + y’) + xz
                         = xz + xz
                         = x (z +z’)
                         = x

                                                

Example 4:
X(W’Z + WZ)+ XY = XZ(W’+ W)+XY
                               =XZ + XY
                               =X(Z+Y)



References:
  1.  http://home.adelphi.edu/~siegfried/cs371/371l3.pdf
  2.   http://courses.cs.vt.edu/cs2505/fall2012/Notes/T32_BooleanAlgebra.pdf
  3.   http://books.google.com.my/books?id=f83XxoBC_8MC&pg=PA122&lpg=PA122&dq=boolean+algebra+computer+organization+architecture&source=bl&ots=5ekB1eR8V9&sig=rAwtSI4K3n6Il26PjUQiIxfX6t8&hl=en&sa=X&ei=QFBtUNuzLorirAfZk4GwBQ&ved=0CCMQ6AEwAQ#v=onepage&q=boolean%20algebra%20computer%20organization%20architecture&f=false
  4.  http://www.ee.surrey.ac.uk/Projects/Labview/boolalgebra/index.html
  5.  http://www.google.com.my/imgres?q=Boolean+Algebra&hl=en&sa=X&biw=1069&bih=599&tbm=isch&prmd=imvnsb&tbnid=coGALtyulgW5BM:&imgrefurl=http://www.tpub.com/neets/book13/54h.htm&docid=t8ID4Z21BOIsdM&imgurl=http://www.tpub.com/neets/book13/NF130220.GIF&w=900&h=751&ei=hVFtUOHCDYbMrQf8lICYBA&zoom=1&iact=rc&dur=0&sig=116109911643460835037&page=1&tbnh=123&tbnw=147&start=0&ndsp=17&ved=1t:429,r:2,s:0,i:76&tx=599&ty=23


Written by,
Yau Kai Shi
B031210077

No comments:

Post a Comment